MongoDB Bulk Operations and Batch Processing: High-Performance Data Operations and Enterprise-Scale Processing Optimization
Modern applications frequently require processing large volumes of data efficiently through bulk operations, batch processing, and high-throughput data manipulation operations that can handle millions of documents while maintaining performance, consistency, and system stability. Traditional approaches to large-scale data operations often rely on individual record processing, inefficient batching strategies, or complex application-level coordination that leads to poor performance, resource contention, and scalability limitations.
MongoDB provides sophisticated bulk operation capabilities that enable high-performance batch processing, efficient data migrations, and optimized large-scale data operations with minimal overhead and maximum throughput. Unlike traditional databases that require complex stored procedures or external batch processing frameworks, MongoDB's native bulk operations offer streamlined, scalable, and efficient data processing with built-in error handling, ordering guarantees, and performance optimization.
The Traditional Batch Processing Challenge
Conventional approaches to large-scale data operations suffer from significant performance and scalability limitations:
-- Traditional PostgreSQL batch processing - inefficient and resource-intensive approaches
-- Single-record processing with significant overhead and poor performance
CREATE TABLE products_import (
import_id BIGSERIAL PRIMARY KEY,
product_id UUID DEFAULT gen_random_uuid(),
product_name VARCHAR(200) NOT NULL,
category VARCHAR(100),
price DECIMAL(10,2) NOT NULL,
stock_quantity INTEGER NOT NULL DEFAULT 0,
supplier_id UUID,
description TEXT,
-- Import tracking and status management
import_batch_id VARCHAR(100),
import_timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
import_status VARCHAR(50) DEFAULT 'pending',
processing_attempts INTEGER DEFAULT 0,
-- Validation and error tracking
validation_errors TEXT[],
processing_error TEXT,
needs_review BOOLEAN DEFAULT FALSE,
-- Performance tracking
processing_start_time TIMESTAMP,
processing_end_time TIMESTAMP,
processing_duration_ms INTEGER
);
-- Inefficient single-record insert approach (extremely slow for large datasets)
DO $$
DECLARE
product_record RECORD;
processing_start TIMESTAMP;
processing_end TIMESTAMP;
error_count INTEGER := 0;
success_count INTEGER := 0;
batch_size INTEGER := 1000;
current_batch INTEGER := 0;
total_records INTEGER;
BEGIN
-- Get total record count for progress tracking
SELECT COUNT(*) INTO total_records FROM raw_product_data;
RAISE NOTICE 'Processing % total records', total_records;
-- Process each record individually (inefficient approach)
FOR product_record IN
SELECT * FROM raw_product_data
ORDER BY import_order ASC
LOOP
processing_start := CURRENT_TIMESTAMP;
BEGIN
-- Individual record validation (repeated overhead)
IF product_record.product_name IS NULL OR LENGTH(product_record.product_name) = 0 THEN
RAISE EXCEPTION 'Invalid product name';
END IF;
IF product_record.price <= 0 THEN
RAISE EXCEPTION 'Invalid price: %', product_record.price;
END IF;
-- Single record insert (high overhead per operation)
INSERT INTO products_import (
product_name,
category,
price,
stock_quantity,
supplier_id,
description,
import_batch_id,
import_status,
processing_start_time
) VALUES (
product_record.product_name,
product_record.category,
product_record.price,
product_record.stock_quantity,
product_record.supplier_id,
product_record.description,
'batch_' || EXTRACT(EPOCH FROM CURRENT_TIMESTAMP),
'processing',
processing_start
);
processing_end := CURRENT_TIMESTAMP;
-- Update processing time (additional overhead)
UPDATE products_import
SET processing_end_time = processing_end,
processing_duration_ms = EXTRACT(MILLISECONDS FROM processing_end - processing_start),
import_status = 'completed'
WHERE product_id = (SELECT product_id FROM products_import
WHERE product_name = product_record.product_name
ORDER BY import_timestamp DESC LIMIT 1);
success_count := success_count + 1;
EXCEPTION WHEN OTHERS THEN
error_count := error_count + 1;
-- Error logging with additional overhead
INSERT INTO import_errors (
import_batch_id,
error_record_data,
error_message,
error_timestamp
) VALUES (
'batch_' || EXTRACT(EPOCH FROM CURRENT_TIMESTAMP),
row_to_json(product_record),
SQLERRM,
CURRENT_TIMESTAMP
);
END;
-- Progress reporting overhead (every record)
current_batch := current_batch + 1;
IF current_batch % batch_size = 0 THEN
RAISE NOTICE 'Processed % of % records (% success, % errors)',
current_batch, total_records, success_count, error_count;
END IF;
END LOOP;
RAISE NOTICE 'Processing complete: % success, % errors', success_count, error_count;
END $$;
-- Batch processing with limited effectiveness and complex management
CREATE OR REPLACE FUNCTION process_product_batch(
batch_id VARCHAR,
batch_size INTEGER DEFAULT 1000,
max_batches INTEGER DEFAULT 100
)
RETURNS TABLE(
batch_number INTEGER,
records_processed INTEGER,
records_success INTEGER,
records_failed INTEGER,
processing_time_ms INTEGER,
total_processing_time_ms BIGINT
) AS $$
DECLARE
current_batch INTEGER := 1;
batch_start_time TIMESTAMP;
batch_end_time TIMESTAMP;
batch_processing_time INTEGER;
total_start_time TIMESTAMP := CURRENT_TIMESTAMP;
records_in_batch INTEGER;
success_in_batch INTEGER;
errors_in_batch INTEGER;
BEGIN
-- Create batch processing table (overhead)
CREATE TEMP TABLE IF NOT EXISTS current_batch_data AS
SELECT * FROM raw_product_data WHERE 1=0;
WHILE current_batch <= max_batches LOOP
batch_start_time := CURRENT_TIMESTAMP;
-- Clear previous batch data
TRUNCATE current_batch_data;
-- Load batch data (complex offset/limit approach)
INSERT INTO current_batch_data
SELECT *
FROM raw_product_data
WHERE processed = FALSE
ORDER BY import_priority DESC, created_at ASC
LIMIT batch_size;
-- Check if batch has data
SELECT COUNT(*) INTO records_in_batch FROM current_batch_data;
EXIT WHEN records_in_batch = 0;
success_in_batch := 0;
errors_in_batch := 0;
-- Process batch with individual operations (still inefficient)
DECLARE
batch_record RECORD;
BEGIN
FOR batch_record IN SELECT * FROM current_batch_data LOOP
BEGIN
-- Validation logic (repeated for every record)
PERFORM validate_product_data(
batch_record.product_name,
batch_record.category,
batch_record.price,
batch_record.stock_quantity
);
-- Individual insert (suboptimal)
INSERT INTO products_import (
product_name,
category,
price,
stock_quantity,
supplier_id,
description,
import_batch_id,
import_status
) VALUES (
batch_record.product_name,
batch_record.category,
batch_record.price,
batch_record.stock_quantity,
batch_record.supplier_id,
batch_record.description,
batch_id,
'completed'
);
success_in_batch := success_in_batch + 1;
EXCEPTION WHEN OTHERS THEN
errors_in_batch := errors_in_batch + 1;
-- Log error (additional overhead)
INSERT INTO batch_processing_errors (
batch_id,
batch_number,
record_data,
error_message,
error_timestamp
) VALUES (
batch_id,
current_batch,
row_to_json(batch_record),
SQLERRM,
CURRENT_TIMESTAMP
);
END;
END LOOP;
END;
-- Mark records as processed (additional update overhead)
UPDATE raw_product_data
SET processed = TRUE,
processed_batch = current_batch,
processed_timestamp = CURRENT_TIMESTAMP
WHERE id IN (SELECT id FROM current_batch_data);
batch_end_time := CURRENT_TIMESTAMP;
batch_processing_time := EXTRACT(MILLISECONDS FROM batch_end_time - batch_start_time);
-- Return batch results
batch_number := current_batch;
records_processed := records_in_batch;
records_success := success_in_batch;
records_failed := errors_in_batch;
processing_time_ms := batch_processing_time;
total_processing_time_ms := EXTRACT(MILLISECONDS FROM batch_end_time - total_start_time);
RETURN NEXT;
current_batch := current_batch + 1;
END LOOP;
-- Cleanup
DROP TABLE IF EXISTS current_batch_data;
END;
$$ LANGUAGE plpgsql;
-- Execute batch processing with limited control and monitoring
SELECT
bp.*,
ROUND(bp.records_processed::NUMERIC / (bp.processing_time_ms / 1000.0), 2) as records_per_second,
ROUND(bp.records_success::NUMERIC / bp.records_processed * 100, 2) as success_rate_percent
FROM process_product_batch('import_batch_2025', 5000, 50) bp
ORDER BY bp.batch_number;
-- Traditional approach limitations:
-- 1. Individual record processing with high per-operation overhead
-- 2. Limited batch optimization and inefficient resource utilization
-- 3. Complex error handling with poor performance during error conditions
-- 4. No built-in ordering guarantees or transaction-level consistency
-- 5. Difficult to monitor and control processing performance
-- 6. Limited scalability for very large datasets (millions of records)
-- 7. Complex progress tracking and status management overhead
-- 8. No automatic retry or recovery mechanisms for failed batches
-- 9. Inefficient memory usage and connection resource management
-- 10. Poor integration with modern distributed processing patterns
-- Complex bulk update attempt with limited effectiveness
WITH bulk_price_updates AS (
SELECT
product_id,
category,
current_price,
-- Calculate new prices based on complex business logic
CASE category
WHEN 'electronics' THEN current_price * 1.15 -- 15% increase
WHEN 'clothing' THEN
CASE
WHEN current_price > 100 THEN current_price * 1.10 -- 10% for high-end
ELSE current_price * 1.20 -- 20% for regular
END
WHEN 'books' THEN
CASE
WHEN stock_quantity > 50 THEN current_price * 0.95 -- 5% discount for overstocked
WHEN stock_quantity < 5 THEN current_price * 1.25 -- 25% increase for rare
ELSE current_price * 1.05 -- 5% standard increase
END
ELSE current_price * 1.08 -- 8% default increase
END as new_price,
-- Audit trail information
'bulk_price_update_2025' as update_reason,
CURRENT_TIMESTAMP as update_timestamp
FROM products
WHERE active = TRUE
AND last_price_update < CURRENT_TIMESTAMP - INTERVAL '6 months'
),
update_validation AS (
SELECT
bpu.*,
-- Validation checks
CASE
WHEN bpu.new_price <= 0 THEN 'invalid_price_zero_negative'
WHEN bpu.new_price > bpu.current_price * 3 THEN 'price_increase_too_large'
WHEN bpu.new_price < bpu.current_price * 0.5 THEN 'price_decrease_too_large'
ELSE 'valid'
END as validation_status,
-- Price change analysis
bpu.new_price - bpu.current_price as price_change,
ROUND(((bpu.new_price - bpu.current_price) / bpu.current_price * 100)::NUMERIC, 2) as price_change_percent
FROM bulk_price_updates bpu
),
validated_updates AS (
SELECT *
FROM update_validation
WHERE validation_status = 'valid'
),
failed_updates AS (
SELECT *
FROM update_validation
WHERE validation_status != 'valid'
)
-- Execute bulk update (still limited by SQL constraints)
UPDATE products
SET
current_price = vu.new_price,
previous_price = products.current_price,
last_price_update = vu.update_timestamp,
price_change_reason = vu.update_reason,
price_change_amount = vu.price_change,
price_change_percent = vu.price_change_percent,
updated_at = CURRENT_TIMESTAMP
FROM validated_updates vu
WHERE products.product_id = vu.product_id;
-- Log failed updates for review
INSERT INTO price_update_errors (
product_id,
attempted_price,
current_price,
validation_error,
error_timestamp,
requires_manual_review
)
SELECT
fu.product_id,
fu.new_price,
fu.current_price,
fu.validation_status,
CURRENT_TIMESTAMP,
TRUE
FROM failed_updates fu;
-- Limitations of traditional bulk processing:
-- 1. Limited by SQL's capabilities for complex bulk operations
-- 2. No native support for partial success handling in single operations
-- 3. Complex validation and error handling logic
-- 4. Poor performance optimization for very large datasets
-- 5. Difficult to monitor progress of long-running bulk operations
-- 6. No built-in retry mechanisms for transient failures
-- 7. Limited flexibility in operation ordering and dependency management
-- 8. Complex memory management for large batch operations
-- 9. No automatic optimization based on data distribution or system load
-- 10. Difficult integration with distributed systems and microservices
MongoDB provides sophisticated bulk operation capabilities with comprehensive optimization and error handling:
// MongoDB Advanced Bulk Operations and High-Performance Batch Processing System
const { MongoClient, BulkWriteResult } = require('mongodb');
const client = new MongoClient('mongodb://localhost:27017');
const db = client.db('bulk_operations_system');
// Comprehensive MongoDB Bulk Operations Manager
class AdvancedBulkOperationsManager {
constructor(db, config = {}) {
this.db = db;
this.collections = {
products: db.collection('products'),
orders: db.collection('orders'),
customers: db.collection('customers'),
inventory: db.collection('inventory'),
bulkOperationLog: db.collection('bulk_operation_log'),
bulkOperationMetrics: db.collection('bulk_operation_metrics'),
processingQueue: db.collection('processing_queue')
};
// Advanced bulk operations configuration
this.config = {
// Batch size optimization
defaultBatchSize: config.defaultBatchSize || 1000,
maxBatchSize: config.maxBatchSize || 10000,
adaptiveBatchSizing: config.adaptiveBatchSizing !== false,
// Performance optimization
enableOrderedOperations: config.enableOrderedOperations !== false,
enableParallelProcessing: config.enableParallelProcessing !== false,
maxConcurrentBatches: config.maxConcurrentBatches || 5,
// Error handling and recovery
enableErrorRecovery: config.enableErrorRecovery !== false,
maxRetries: config.maxRetries || 3,
retryDelayMs: config.retryDelayMs || 1000,
// Monitoring and metrics
enableMetricsCollection: config.enableMetricsCollection !== false,
enableProgressTracking: config.enableProgressTracking !== false,
metricsReportingInterval: config.metricsReportingInterval || 10000,
// Memory and resource management
enableMemoryOptimization: config.enableMemoryOptimization !== false,
maxMemoryUsageMB: config.maxMemoryUsageMB || 1024,
enableGarbageCollection: config.enableGarbageCollection !== false
};
// Operational state management
this.operationStats = {
totalOperations: 0,
successfulOperations: 0,
failedOperations: 0,
totalBatches: 0,
avgBatchProcessingTime: 0,
totalProcessingTime: 0
};
this.activeOperations = new Map();
this.operationQueue = [];
this.performanceMetrics = new Map();
console.log('Advanced Bulk Operations Manager initialized');
}
async initializeBulkOperationsSystem() {
console.log('Initializing comprehensive bulk operations system...');
try {
// Setup indexes for performance optimization
await this.setupPerformanceIndexes();
// Initialize metrics collection
await this.initializeMetricsSystem();
// Setup operation queue for large-scale processing
await this.initializeProcessingQueue();
// Configure memory and resource monitoring
await this.setupResourceMonitoring();
console.log('Bulk operations system initialized successfully');
} catch (error) {
console.error('Error initializing bulk operations system:', error);
throw error;
}
}
async performAdvancedBulkInsert(collectionName, documents, options = {}) {
const operation = {
operationId: `bulk_insert_${Date.now()}_${Math.random().toString(36).substr(2, 9)}`,
operationType: 'bulk_insert',
collectionName: collectionName,
documentsCount: documents.length,
startTime: new Date(),
status: 'processing'
};
console.log(`Starting bulk insert operation: ${operation.operationId}`);
console.log(`Inserting ${documents.length} documents into ${collectionName}`);
try {
// Register operation for tracking
this.activeOperations.set(operation.operationId, operation);
// Validate and prepare documents
const validatedDocuments = await this.validateAndPrepareDocuments(documents, 'insert');
// Determine optimal batch configuration
const batchConfig = await this.optimizeBatchConfiguration(validatedDocuments, options);
// Execute bulk insert with advanced error handling
const result = await this.executeBulkInsert(
this.collections[collectionName],
validatedDocuments,
batchConfig,
operation
);
// Update operation status
operation.endTime = new Date();
operation.status = 'completed';
operation.result = result;
operation.processingTime = operation.endTime - operation.startTime;
// Log operation results
await this.logBulkOperation(operation);
// Update performance metrics
await this.updateOperationMetrics(operation);
console.log(`Bulk insert completed: ${operation.operationId}`);
console.log(`Inserted ${result.insertedCount} documents successfully`);
return result;
} catch (error) {
console.error(`Bulk insert failed: ${operation.operationId}`, error);
// Handle operation failure
operation.endTime = new Date();
operation.status = 'failed';
operation.error = {
message: error.message,
stack: error.stack
};
await this.handleOperationError(operation, error);
throw error;
} finally {
// Cleanup operation tracking
this.activeOperations.delete(operation.operationId);
}
}
async executeBulkInsert(collection, documents, batchConfig, operation) {
const results = {
insertedCount: 0,
insertedIds: [],
errors: [],
batches: [],
totalBatches: Math.ceil(documents.length / batchConfig.batchSize)
};
console.log(`Executing bulk insert with ${results.totalBatches} batches of size ${batchConfig.batchSize}`);
// Process documents in optimized batches
for (let i = 0; i < documents.length; i += batchConfig.batchSize) {
const batchStart = Date.now();
const batch = documents.slice(i, i + batchConfig.batchSize);
const batchNumber = Math.floor(i / batchConfig.batchSize) + 1;
try {
console.log(`Processing batch ${batchNumber}/${results.totalBatches} (${batch.length} documents)`);
// Create bulk write operations for batch
const bulkOps = batch.map(doc => ({
insertOne: {
document: {
...doc,
_bulkOperationId: operation.operationId,
_batchNumber: batchNumber,
_insertedAt: new Date()
}
}
}));
// Execute bulk write with proper options
const batchResult = await collection.bulkWrite(bulkOps, {
ordered: batchConfig.ordered,
bypassDocumentValidation: false,
...batchConfig.bulkWriteOptions
});
// Process batch results
const batchProcessingTime = Date.now() - batchStart;
const batchInfo = {
batchNumber: batchNumber,
documentsCount: batch.length,
insertedCount: batchResult.insertedCount,
processingTime: batchProcessingTime,
insertedIds: Object.values(batchResult.insertedIds || {}),
throughput: batch.length / (batchProcessingTime / 1000)
};
results.batches.push(batchInfo);
results.insertedCount += batchResult.insertedCount;
results.insertedIds.push(...batchInfo.insertedIds);
// Update operation progress
operation.progress = {
batchesCompleted: batchNumber,
totalBatches: results.totalBatches,
documentsProcessed: i + batch.length,
totalDocuments: documents.length,
completionPercent: Math.round(((i + batch.length) / documents.length) * 100)
};
// Report progress periodically
if (batchNumber % 10 === 0 || batchNumber === results.totalBatches) {
console.log(`Progress: ${operation.progress.completionPercent}% (${operation.progress.documentsProcessed}/${operation.progress.totalDocuments})`);
}
// Adaptive batch size optimization based on performance
if (this.config.adaptiveBatchSizing) {
batchConfig = await this.adaptBatchSize(batchConfig, batchInfo);
}
// Memory pressure management
if (this.config.enableMemoryOptimization) {
await this.manageMemoryPressure();
}
} catch (batchError) {
console.error(`Batch ${batchNumber} failed:`, batchError);
// Handle batch-level errors
const batchErrorInfo = {
batchNumber: batchNumber,
documentsCount: batch.length,
error: {
message: batchError.message,
code: batchError.code,
details: batchError.writeErrors || []
},
processingTime: Date.now() - batchStart
};
results.errors.push(batchErrorInfo);
results.batches.push(batchErrorInfo);
// Determine if operation should continue
if (batchConfig.ordered && !batchConfig.continueOnError) {
throw new Error(`Bulk insert failed at batch ${batchNumber}: ${batchError.message}`);
}
// Retry failed batch if enabled
if (this.config.enableErrorRecovery) {
await this.retryFailedBatch(collection, batch, batchConfig, batchNumber, operation);
}
}
}
// Calculate final metrics
results.totalProcessingTime = Date.now() - operation.startTime.getTime();
results.avgBatchProcessingTime = results.batches
.filter(b => b.processingTime)
.reduce((sum, b) => sum + b.processingTime, 0) / results.batches.length;
results.overallThroughput = results.insertedCount / (results.totalProcessingTime / 1000);
results.successRate = (results.insertedCount / documents.length) * 100;
return results;
}
async performAdvancedBulkUpdate(collectionName, updates, options = {}) {
const operation = {
operationId: `bulk_update_${Date.now()}_${Math.random().toString(36).substr(2, 9)}`,
operationType: 'bulk_update',
collectionName: collectionName,
updatesCount: updates.length,
startTime: new Date(),
status: 'processing'
};
console.log(`Starting bulk update operation: ${operation.operationId}`);
console.log(`Updating ${updates.length} documents in ${collectionName}`);
try {
// Register operation for tracking
this.activeOperations.set(operation.operationId, operation);
// Validate and prepare update operations
const validatedUpdates = await this.validateAndPrepareUpdates(updates);
// Optimize batch configuration for updates
const batchConfig = await this.optimizeBatchConfiguration(validatedUpdates, options);
// Execute bulk update operations
const result = await this.executeBulkUpdate(
this.collections[collectionName],
validatedUpdates,
batchConfig,
operation
);
// Complete operation tracking
operation.endTime = new Date();
operation.status = 'completed';
operation.result = result;
operation.processingTime = operation.endTime - operation.startTime;
// Log and report results
await this.logBulkOperation(operation);
await this.updateOperationMetrics(operation);
console.log(`Bulk update completed: ${operation.operationId}`);
console.log(`Updated ${result.modifiedCount} documents successfully`);
return result;
} catch (error) {
console.error(`Bulk update failed: ${operation.operationId}`, error);
operation.endTime = new Date();
operation.status = 'failed';
operation.error = {
message: error.message,
stack: error.stack
};
await this.handleOperationError(operation, error);
throw error;
} finally {
this.activeOperations.delete(operation.operationId);
}
}
async executeBulkUpdate(collection, updates, batchConfig, operation) {
const results = {
matchedCount: 0,
modifiedCount: 0,
upsertedCount: 0,
upsertedIds: [],
errors: [],
batches: [],
totalBatches: Math.ceil(updates.length / batchConfig.batchSize)
};
console.log(`Executing bulk update with ${results.totalBatches} batches`);
// Process updates in optimized batches
for (let i = 0; i < updates.length; i += batchConfig.batchSize) {
const batchStart = Date.now();
const batch = updates.slice(i, i + batchConfig.batchSize);
const batchNumber = Math.floor(i / batchConfig.batchSize) + 1;
try {
console.log(`Processing update batch ${batchNumber}/${results.totalBatches} (${batch.length} operations)`);
// Create bulk write operations
const bulkOps = batch.map(update => {
const updateOp = {
filter: update.filter,
update: {
...update.update,
$set: {
...update.update.$set,
_bulkOperationId: operation.operationId,
_batchNumber: batchNumber,
_lastUpdated: new Date()
}
}
};
if (update.upsert) {
return {
updateOne: {
...updateOp,
upsert: true
}
};
} else if (update.multi) {
return {
updateMany: updateOp
};
} else {
return {
updateOne: updateOp
};
}
});
// Execute bulk write
const batchResult = await collection.bulkWrite(bulkOps, {
ordered: batchConfig.ordered,
bypassDocumentValidation: false,
...batchConfig.bulkWriteOptions
});
// Process batch results
const batchProcessingTime = Date.now() - batchStart;
const batchInfo = {
batchNumber: batchNumber,
operationsCount: batch.length,
matchedCount: batchResult.matchedCount || 0,
modifiedCount: batchResult.modifiedCount || 0,
upsertedCount: batchResult.upsertedCount || 0,
processingTime: batchProcessingTime,
throughput: batch.length / (batchProcessingTime / 1000)
};
results.batches.push(batchInfo);
results.matchedCount += batchInfo.matchedCount;
results.modifiedCount += batchInfo.modifiedCount;
results.upsertedCount += batchInfo.upsertedCount;
if (batchResult.upsertedIds) {
results.upsertedIds.push(...Object.values(batchResult.upsertedIds));
}
// Update progress tracking
operation.progress = {
batchesCompleted: batchNumber,
totalBatches: results.totalBatches,
operationsProcessed: i + batch.length,
totalOperations: updates.length,
completionPercent: Math.round(((i + batch.length) / updates.length) * 100)
};
// Progress reporting
if (batchNumber % 5 === 0 || batchNumber === results.totalBatches) {
console.log(`Update progress: ${operation.progress.completionPercent}% (${operation.progress.operationsProcessed}/${operation.progress.totalOperations})`);
}
} catch (batchError) {
console.error(`Update batch ${batchNumber} failed:`, batchError);
const batchErrorInfo = {
batchNumber: batchNumber,
operationsCount: batch.length,
error: {
message: batchError.message,
code: batchError.code,
writeErrors: batchError.writeErrors || []
},
processingTime: Date.now() - batchStart
};
results.errors.push(batchErrorInfo);
results.batches.push(batchErrorInfo);
if (batchConfig.ordered && !batchConfig.continueOnError) {
throw new Error(`Bulk update failed at batch ${batchNumber}: ${batchError.message}`);
}
}
}
// Calculate final metrics
results.totalProcessingTime = Date.now() - operation.startTime.getTime();
results.avgBatchProcessingTime = results.batches
.filter(b => b.processingTime)
.reduce((sum, b) => sum + b.processingTime, 0) / results.batches.length;
results.overallThroughput = results.modifiedCount / (results.totalProcessingTime / 1000);
results.successRate = (results.modifiedCount / updates.length) * 100;
return results;
}
async performAdvancedBulkDelete(collectionName, filters, options = {}) {
const operation = {
operationId: `bulk_delete_${Date.now()}_${Math.random().toString(36).substr(2, 9)}`,
operationType: 'bulk_delete',
collectionName: collectionName,
filtersCount: filters.length,
startTime: new Date(),
status: 'processing'
};
console.log(`Starting bulk delete operation: ${operation.operationId}`);
console.log(`Deleting documents with ${filters.length} filter conditions in ${collectionName}`);
try {
this.activeOperations.set(operation.operationId, operation);
// Validate and prepare delete operations
const validatedFilters = await this.validateAndPrepareDeletes(filters);
// Optimize batch configuration for deletes
const batchConfig = await this.optimizeBatchConfiguration(validatedFilters, options);
// Execute bulk delete operations
const result = await this.executeBulkDelete(
this.collections[collectionName],
validatedFilters,
batchConfig,
operation
);
// Complete operation
operation.endTime = new Date();
operation.status = 'completed';
operation.result = result;
operation.processingTime = operation.endTime - operation.startTime;
await this.logBulkOperation(operation);
await this.updateOperationMetrics(operation);
console.log(`Bulk delete completed: ${operation.operationId}`);
console.log(`Deleted ${result.deletedCount} documents successfully`);
return result;
} catch (error) {
console.error(`Bulk delete failed: ${operation.operationId}`, error);
operation.endTime = new Date();
operation.status = 'failed';
operation.error = {
message: error.message,
stack: error.stack
};
await this.handleOperationError(operation, error);
throw error;
} finally {
this.activeOperations.delete(operation.operationId);
}
}
async executeBulkDelete(collection, filters, batchConfig, operation) {
const results = {
deletedCount: 0,
errors: [],
batches: [],
totalBatches: Math.ceil(filters.length / batchConfig.batchSize)
};
console.log(`Executing bulk delete with ${results.totalBatches} batches`);
for (let i = 0; i < filters.length; i += batchConfig.batchSize) {
const batchStart = Date.now();
const batch = filters.slice(i, i + batchConfig.batchSize);
const batchNumber = Math.floor(i / batchConfig.batchSize) + 1;
try {
console.log(`Processing delete batch ${batchNumber}/${results.totalBatches} (${batch.length} operations)`);
// Create bulk delete operations
const bulkOps = batch.map(filter => ({
deleteMany: {
filter: filter
}
}));
// Execute bulk write
const batchResult = await collection.bulkWrite(bulkOps, {
ordered: batchConfig.ordered,
...batchConfig.bulkWriteOptions
});
const batchProcessingTime = Date.now() - batchStart;
const batchInfo = {
batchNumber: batchNumber,
operationsCount: batch.length,
deletedCount: batchResult.deletedCount || 0,
processingTime: batchProcessingTime,
throughput: (batchResult.deletedCount || 0) / (batchProcessingTime / 1000)
};
results.batches.push(batchInfo);
results.deletedCount += batchInfo.deletedCount;
// Update progress
operation.progress = {
batchesCompleted: batchNumber,
totalBatches: results.totalBatches,
operationsProcessed: i + batch.length,
totalOperations: filters.length,
completionPercent: Math.round(((i + batch.length) / filters.length) * 100)
};
} catch (batchError) {
console.error(`Delete batch ${batchNumber} failed:`, batchError);
const batchErrorInfo = {
batchNumber: batchNumber,
operationsCount: batch.length,
error: {
message: batchError.message,
code: batchError.code
},
processingTime: Date.now() - batchStart
};
results.errors.push(batchErrorInfo);
results.batches.push(batchErrorInfo);
}
}
results.totalProcessingTime = Date.now() - operation.startTime.getTime();
results.overallThroughput = results.deletedCount / (results.totalProcessingTime / 1000);
return results;
}
async validateAndPrepareDocuments(documents, operationType) {
console.log(`Validating and preparing ${documents.length} documents for ${operationType}`);
const validatedDocuments = [];
const validationErrors = [];
for (let i = 0; i < documents.length; i++) {
const doc = documents[i];
try {
// Basic validation
if (!doc || typeof doc !== 'object') {
throw new Error('Document must be a valid object');
}
// Add operation metadata
const preparedDoc = {
...doc,
_operationType: operationType,
_operationTimestamp: new Date(),
_validatedAt: new Date()
};
// Type-specific validation
if (operationType === 'insert') {
// Ensure no _id conflicts for inserts
if (preparedDoc._id) {
// Keep existing _id but validate it's unique
}
}
validatedDocuments.push(preparedDoc);
} catch (error) {
validationErrors.push({
index: i,
document: doc,
error: error.message
});
}
}
if (validationErrors.length > 0) {
console.warn(`Found ${validationErrors.length} validation errors out of ${documents.length} documents`);
// Log validation errors
await this.collections.bulkOperationLog.insertOne({
operationType: 'validation',
validationErrors: validationErrors,
timestamp: new Date()
});
}
console.log(`Validation complete: ${validatedDocuments.length} valid documents`);
return validatedDocuments;
}
async optimizeBatchConfiguration(data, options) {
const dataSize = data.length;
let optimalBatchSize = this.config.defaultBatchSize;
// Adaptive batch size based on data volume
if (this.config.adaptiveBatchSizing) {
if (dataSize > 100000) {
optimalBatchSize = Math.min(this.config.maxBatchSize, 5000);
} else if (dataSize > 10000) {
optimalBatchSize = 2000;
} else if (dataSize > 1000) {
optimalBatchSize = 1000;
} else {
optimalBatchSize = Math.max(100, dataSize);
}
}
// Consider memory constraints
if (this.config.enableMemoryOptimization) {
const estimatedMemoryPerDoc = 1; // KB estimate
const totalMemoryMB = (dataSize * estimatedMemoryPerDoc) / 1024;
if (totalMemoryMB > this.config.maxMemoryUsageMB) {
const memoryAdjustedBatchSize = Math.floor(
(this.config.maxMemoryUsageMB * 1024) / estimatedMemoryPerDoc
);
optimalBatchSize = Math.min(optimalBatchSize, memoryAdjustedBatchSize);
}
}
const batchConfig = {
batchSize: optimalBatchSize,
ordered: options.ordered !== false,
continueOnError: options.continueOnError === true,
bulkWriteOptions: {
writeConcern: options.writeConcern || { w: 'majority' },
...(options.bulkWriteOptions || {})
}
};
console.log(`Optimized batch configuration: size=${batchConfig.batchSize}, ordered=${batchConfig.ordered}`);
return batchConfig;
}
async logBulkOperation(operation) {
try {
await this.collections.bulkOperationLog.insertOne({
operationId: operation.operationId,
operationType: operation.operationType,
collectionName: operation.collectionName,
status: operation.status,
startTime: operation.startTime,
endTime: operation.endTime,
processingTime: operation.processingTime,
result: operation.result,
error: operation.error,
progress: operation.progress,
createdAt: new Date()
});
} catch (error) {
console.warn('Error logging bulk operation:', error.message);
}
}
async updateOperationMetrics(operation) {
try {
// Update global statistics
this.operationStats.totalOperations++;
if (operation.status === 'completed') {
this.operationStats.successfulOperations++;
} else {
this.operationStats.failedOperations++;
}
if (operation.result && operation.result.batches) {
this.operationStats.totalBatches += operation.result.batches.length;
const avgBatchTime = operation.result.avgBatchProcessingTime;
if (avgBatchTime) {
this.operationStats.avgBatchProcessingTime =
(this.operationStats.avgBatchProcessingTime + avgBatchTime) / 2;
}
}
// Store detailed metrics
await this.collections.bulkOperationMetrics.insertOne({
operationId: operation.operationId,
operationType: operation.operationType,
collectionName: operation.collectionName,
metrics: {
processingTime: operation.processingTime,
throughput: operation.result ? operation.result.overallThroughput : null,
successRate: operation.result ? operation.result.successRate : null,
batchCount: operation.result ? operation.result.batches.length : null,
avgBatchTime: operation.result ? operation.result.avgBatchProcessingTime : null
},
timestamp: new Date()
});
} catch (error) {
console.warn('Error updating operation metrics:', error.message);
}
}
async generateBulkOperationsReport() {
console.log('Generating bulk operations performance report...');
try {
const report = {
timestamp: new Date(),
globalStats: { ...this.operationStats },
activeOperations: this.activeOperations.size,
// Recent operations analysis
recentOperations: await this.collections.bulkOperationLog.find({
startTime: { $gte: new Date(Date.now() - 24 * 60 * 60 * 1000) }
}).sort({ startTime: -1 }).limit(50).toArray(),
// Performance metrics
performanceMetrics: await this.collections.bulkOperationMetrics.aggregate([
{
$match: {
timestamp: { $gte: new Date(Date.now() - 24 * 60 * 60 * 1000) }
}
},
{
$group: {
_id: '$operationType',
count: { $sum: 1 },
avgProcessingTime: { $avg: '$metrics.processingTime' },
avgThroughput: { $avg: '$metrics.throughput' },
avgSuccessRate: { $avg: '$metrics.successRate' },
totalBatches: { $sum: '$metrics.batchCount' }
}
}
]).toArray()
};
// Calculate health indicators
report.healthIndicators = {
successRate: this.operationStats.totalOperations > 0 ?
(this.operationStats.successfulOperations / this.operationStats.totalOperations * 100).toFixed(2) : 0,
avgProcessingTime: this.operationStats.avgBatchProcessingTime,
systemLoad: this.activeOperations.size,
status: this.activeOperations.size > 10 ? 'high_load' :
this.operationStats.failedOperations > this.operationStats.successfulOperations ? 'degraded' : 'healthy'
};
return report;
} catch (error) {
console.error('Error generating bulk operations report:', error);
return {
timestamp: new Date(),
error: error.message,
globalStats: this.operationStats
};
}
}
// Additional helper methods for comprehensive bulk operations management
async setupPerformanceIndexes() {
console.log('Setting up performance indexes for bulk operations...');
// Index for operation logging and metrics
await this.collections.bulkOperationLog.createIndex(
{ operationId: 1, startTime: -1 },
{ background: true }
);
await this.collections.bulkOperationMetrics.createIndex(
{ operationType: 1, timestamp: -1 },
{ background: true }
);
}
async adaptBatchSize(currentConfig, batchInfo) {
// Adaptive batch size optimization based on performance
if (batchInfo.throughput < 100) { // documents per second
currentConfig.batchSize = Math.max(100, Math.floor(currentConfig.batchSize * 0.8));
} else if (batchInfo.throughput > 1000) {
currentConfig.batchSize = Math.min(this.config.maxBatchSize, Math.floor(currentConfig.batchSize * 1.2));
}
return currentConfig;
}
async manageMemoryPressure() {
if (this.config.enableGarbageCollection) {
if (global.gc) {
global.gc();
}
}
}
}
// Benefits of MongoDB Advanced Bulk Operations:
// - Native bulk operation support with minimal overhead and maximum throughput
// - Sophisticated error handling with partial success support and retry mechanisms
// - Adaptive batch sizing and performance optimization based on data characteristics
// - Comprehensive operation tracking and monitoring with detailed metrics
// - Memory and resource management for large-scale data processing
// - Built-in transaction-level consistency and ordering guarantees
// - Flexible operation types (insert, update, delete, upsert) with advanced filtering
// - Scalable architecture supporting millions of documents efficiently
// - Integration with MongoDB's native indexing and query optimization
// - SQL-compatible bulk operations through QueryLeaf integration
module.exports = {
AdvancedBulkOperationsManager
};
Understanding MongoDB Bulk Operations Architecture
Advanced Bulk Processing and Performance Optimization Patterns
Implement sophisticated bulk operation patterns for production MongoDB deployments:
// Enterprise-grade MongoDB bulk operations with advanced optimization
class EnterpriseBulkOperationsOrchestrator extends AdvancedBulkOperationsManager {
constructor(db, enterpriseConfig) {
super(db, enterpriseConfig);
this.enterpriseConfig = {
...enterpriseConfig,
enableDistributedProcessing: true,
enableDataPartitioning: true,
enableAutoSharding: true,
enableComplianceTracking: true,
enableAuditLogging: true
};
this.setupEnterpriseFeatures();
}
async implementDistributedBulkProcessing() {
console.log('Implementing distributed bulk processing across shards...');
// Advanced distributed processing configuration
const distributedConfig = {
shardAwareness: {
enableShardKeyOptimization: true,
balanceWorkloadAcrossShards: true,
minimizeCrossShardOperations: true,
optimizeForShardDistribution: true
},
parallelProcessing: {
maxConcurrentShards: 8,
adaptiveParallelism: true,
loadBalancedDistribution: true,
resourceAwareScheduling: true
},
consistencyManagement: {
maintainTransactionalBoundaries: true,
ensureShardConsistency: true,
coordinateDistributedOperations: true,
handlePartialFailures: true
}
};
return await this.deployDistributedBulkProcessing(distributedConfig);
}
async setupEnterpriseComplianceFramework() {
console.log('Setting up enterprise compliance framework...');
const complianceConfig = {
auditTrail: {
comprehensiveOperationLogging: true,
dataLineageTracking: true,
complianceReporting: true,
retentionPolicyEnforcement: true
},
securityControls: {
operationAccessControl: true,
dataEncryptionInTransit: true,
auditLogEncryption: true,
nonRepudiationSupport: true
},
governanceFramework: {
operationApprovalWorkflows: true,
dataClassificationEnforcement: true,
regulatoryComplianceValidation: true,
businessRuleValidation: true
}
};
return await this.implementComplianceFramework(complianceConfig);
}
}
SQL-Style Bulk Operations with QueryLeaf
QueryLeaf provides familiar SQL syntax for MongoDB bulk operations and batch processing:
-- QueryLeaf advanced bulk operations with SQL-familiar syntax for MongoDB
-- Configure bulk operations with comprehensive performance optimization
CONFIGURE BULK_OPERATIONS
SET batch_size = 1000,
max_batch_size = 10000,
adaptive_batching = true,
ordered_operations = true,
parallel_processing = true,
max_concurrent_batches = 5,
error_recovery = true,
metrics_collection = true;
-- Advanced bulk insert with intelligent batching and error handling
BEGIN BULK_OPERATION 'product_import_2025';
WITH product_validation AS (
-- Comprehensive data validation and preparation
SELECT
*,
-- Data quality validation
CASE
WHEN product_name IS NULL OR LENGTH(TRIM(product_name)) = 0 THEN 'invalid_name'
WHEN category IS NULL OR LENGTH(TRIM(category)) = 0 THEN 'invalid_category'
WHEN price IS NULL OR price <= 0 THEN 'invalid_price'
WHEN stock_quantity IS NULL OR stock_quantity < 0 THEN 'invalid_stock'
ELSE 'valid'
END as validation_status,
-- Data enrichment and standardization
UPPER(TRIM(product_name)) as normalized_name,
LOWER(TRIM(category)) as normalized_category,
ROUND(price::NUMERIC, 2) as normalized_price,
COALESCE(stock_quantity, 0) as normalized_stock,
-- Business rule validation
CASE
WHEN category = 'electronics' AND price > 10000 THEN 'requires_approval'
WHEN stock_quantity > 1000 AND supplier_id IS NULL THEN 'requires_supplier'
ELSE 'approved'
END as business_validation,
-- Generate unique identifiers and metadata
gen_random_uuid() as product_id,
CURRENT_TIMESTAMP as import_timestamp,
'bulk_import_2025' as import_batch,
ROW_NUMBER() OVER (ORDER BY product_name) as import_sequence
FROM raw_product_import_data
WHERE status = 'pending'
),
validated_products AS (
SELECT *
FROM product_validation
WHERE validation_status = 'valid'
AND business_validation = 'approved'
),
rejected_products AS (
SELECT *
FROM product_validation
WHERE validation_status != 'valid'
OR business_validation != 'approved'
)
-- Execute high-performance bulk insert with advanced error handling
INSERT INTO products (
product_id,
product_name,
category,
price,
stock_quantity,
supplier_id,
description,
-- Metadata and tracking fields
import_batch,
import_timestamp,
import_sequence,
created_at,
updated_at,
-- Search and indexing optimization
search_keywords,
normalized_name,
normalized_category
)
SELECT
vp.product_id,
vp.normalized_name,
vp.normalized_category,
vp.normalized_price,
vp.normalized_stock,
vp.supplier_id,
vp.description,
-- Tracking information
vp.import_batch,
vp.import_timestamp,
vp.import_sequence,
vp.import_timestamp,
vp.import_timestamp,
-- Generated fields for optimization
ARRAY_CAT(
STRING_TO_ARRAY(LOWER(vp.normalized_name), ' '),
STRING_TO_ARRAY(LOWER(vp.normalized_category), ' ')
) as search_keywords,
vp.normalized_name,
vp.normalized_category
FROM validated_products vp
-- Bulk insert configuration with advanced options
WITH BULK_OPTIONS (
batch_size = 2000,
ordered = true,
continue_on_error = false,
write_concern = '{ "w": "majority", "j": true }',
bypass_document_validation = false,
-- Performance optimization
adaptive_batching = true,
parallel_processing = true,
memory_optimization = true,
-- Error handling configuration
retry_attempts = 3,
retry_delay_ms = 1000,
dead_letter_queue = true,
-- Progress tracking
progress_reporting = true,
progress_interval = 1000,
metrics_collection = true
);
-- Log rejected products for review and correction
INSERT INTO product_import_errors (
import_batch,
error_timestamp,
validation_error,
business_error,
raw_data,
requires_manual_review
)
SELECT
rp.import_batch,
CURRENT_TIMESTAMP,
rp.validation_status,
rp.business_validation,
ROW_TO_JSON(rp),
true
FROM rejected_products rp;
COMMIT BULK_OPERATION;
-- Advanced bulk update with complex business logic and performance optimization
BEGIN BULK_OPERATION 'price_adjustment_2025';
WITH price_adjustment_analysis AS (
-- Sophisticated price adjustment calculation
SELECT
p.product_id,
p.product_name,
p.category,
p.current_price,
p.stock_quantity,
p.last_price_update,
p.supplier_id,
-- Market analysis data
ma.competitor_avg_price,
ma.market_demand_score,
ma.seasonal_factor,
-- Inventory analysis
CASE
WHEN p.stock_quantity = 0 THEN 'out_of_stock'
WHEN p.stock_quantity < 10 THEN 'low_stock'
WHEN p.stock_quantity > 100 THEN 'overstocked'
ELSE 'normal_stock'
END as stock_status,
-- Calculate new price with complex business rules
CASE p.category
WHEN 'electronics' THEN
CASE
WHEN ma.market_demand_score > 8 AND p.stock_quantity < 10 THEN p.current_price * 1.25
WHEN ma.competitor_avg_price > p.current_price * 1.1 THEN p.current_price * 1.15
WHEN p.stock_quantity > 100 THEN p.current_price * 0.90
ELSE p.current_price * (1 + (ma.seasonal_factor * 0.1))
END
WHEN 'clothing' THEN
CASE
WHEN ma.seasonal_factor > 1.2 THEN p.current_price * 1.20
WHEN p.stock_quantity > 50 THEN p.current_price * 0.85
WHEN ma.market_demand_score > 7 THEN p.current_price * 1.10
ELSE p.current_price * 1.05
END
WHEN 'books' THEN
CASE
WHEN p.stock_quantity > 200 THEN p.current_price * 0.75
WHEN ma.market_demand_score > 9 THEN p.current_price * 1.15
ELSE p.current_price * 1.02
END
ELSE p.current_price * (1 + LEAST(0.15, ma.market_demand_score * 0.02))
END as calculated_new_price,
-- Adjustment metadata
'market_analysis_2025' as adjustment_reason,
CURRENT_TIMESTAMP as adjustment_timestamp
FROM products p
LEFT JOIN market_analysis ma ON p.product_id = ma.product_id
WHERE p.active = true
AND p.last_price_update < CURRENT_TIMESTAMP - INTERVAL '3 months'
AND ma.analysis_date >= CURRENT_DATE - INTERVAL '7 days'
),
validated_price_adjustments AS (
SELECT
paa.*,
-- Price change validation
paa.calculated_new_price - paa.current_price as price_change,
ROUND(
((paa.calculated_new_price - paa.current_price) / paa.current_price * 100)::NUMERIC,
2
) as price_change_percent,
-- Validation rules
CASE
WHEN paa.calculated_new_price <= 0 THEN 'invalid_negative_price'
WHEN ABS(paa.calculated_new_price - paa.current_price) / paa.current_price > 0.5 THEN 'change_too_large'
WHEN paa.calculated_new_price = paa.current_price THEN 'no_change_needed'
ELSE 'valid'
END as price_validation,
-- Business impact assessment
CASE
WHEN ABS(paa.calculated_new_price - paa.current_price) > 100 THEN 'high_impact'
WHEN ABS(paa.calculated_new_price - paa.current_price) > 20 THEN 'medium_impact'
ELSE 'low_impact'
END as business_impact
FROM price_adjustment_analysis paa
),
approved_adjustments AS (
SELECT *
FROM validated_price_adjustments
WHERE price_validation = 'valid'
AND (business_impact != 'high_impact' OR market_demand_score > 8)
)
-- Execute bulk update with comprehensive tracking and optimization
UPDATE products
SET
current_price = aa.calculated_new_price,
previous_price = products.current_price,
last_price_update = aa.adjustment_timestamp,
price_change_amount = aa.price_change,
price_change_percent = aa.price_change_percent,
price_adjustment_reason = aa.adjustment_reason,
-- Update metadata
updated_at = aa.adjustment_timestamp,
version = products.version + 1,
-- Search index optimization
price_tier = CASE
WHEN aa.calculated_new_price < 25 THEN 'budget'
WHEN aa.calculated_new_price < 100 THEN 'mid_range'
WHEN aa.calculated_new_price < 500 THEN 'premium'
ELSE 'luxury'
END,
-- Business intelligence fields
last_market_analysis = aa.adjustment_timestamp,
stock_price_ratio = aa.calculated_new_price / GREATEST(aa.stock_quantity, 1),
competitive_position = CASE
WHEN aa.competitor_avg_price > 0 THEN
CASE
WHEN aa.calculated_new_price < aa.competitor_avg_price * 0.9 THEN 'price_leader'
WHEN aa.calculated_new_price > aa.competitor_avg_price * 1.1 THEN 'premium_positioned'
ELSE 'market_aligned'
END
ELSE 'no_competition_data'
END
FROM approved_adjustments aa
WHERE products.product_id = aa.product_id
-- Bulk update configuration
WITH BULK_OPTIONS (
batch_size = 1500,
ordered = false, -- Allow parallel processing for updates
continue_on_error = true,
write_concern = '{ "w": "majority" }',
-- Performance optimization for updates
adaptive_batching = true,
parallel_processing = true,
max_concurrent_batches = 8,
-- Update-specific optimizations
minimize_index_updates = true,
batch_index_updates = true,
optimize_for_throughput = true,
-- Progress and monitoring
progress_reporting = true,
progress_interval = 500,
operation_timeout_ms = 300000 -- 5 minutes
);
-- Create price adjustment audit trail
INSERT INTO price_adjustment_audit (
adjustment_batch,
product_id,
old_price,
new_price,
price_change,
price_change_percent,
adjustment_reason,
business_impact,
market_data_used,
adjustment_timestamp,
approved_by
)
SELECT
'bulk_adjustment_2025',
aa.product_id,
aa.current_price,
aa.calculated_new_price,
aa.price_change,
aa.price_change_percent,
aa.adjustment_reason,
aa.business_impact,
JSON_OBJECT(
'competitor_avg_price', aa.competitor_avg_price,
'market_demand_score', aa.market_demand_score,
'seasonal_factor', aa.seasonal_factor,
'stock_status', aa.stock_status
),
aa.adjustment_timestamp,
'automated_system'
FROM approved_adjustments aa;
COMMIT BULK_OPERATION;
-- Advanced bulk delete with safety checks and cascade handling
BEGIN BULK_OPERATION 'product_cleanup_2025';
WITH deletion_analysis AS (
-- Identify products for deletion with comprehensive safety checks
SELECT
p.product_id,
p.product_name,
p.category,
p.stock_quantity,
p.last_sale_date,
p.created_at,
p.supplier_id,
-- Dependency analysis
(SELECT COUNT(*) FROM order_items oi WHERE oi.product_id = p.product_id) as order_references,
(SELECT COUNT(*) FROM shopping_cart_items sci WHERE sci.product_id = p.product_id) as cart_references,
(SELECT COUNT(*) FROM product_reviews pr WHERE pr.product_id = p.product_id) as review_count,
(SELECT COUNT(*) FROM wishlist_items wi WHERE wi.product_id = p.product_id) as wishlist_references,
-- Business impact assessment
COALESCE(p.total_sales_amount, 0) as lifetime_sales,
COALESCE(p.total_units_sold, 0) as lifetime_units_sold,
-- Deletion criteria evaluation
CASE
WHEN p.status = 'discontinued'
AND p.stock_quantity = 0
AND (p.last_sale_date IS NULL OR p.last_sale_date < CURRENT_DATE - INTERVAL '2 years')
THEN 'eligible_discontinued'
WHEN p.created_at < CURRENT_DATE - INTERVAL '5 years'
AND COALESCE(p.total_units_sold, 0) = 0
AND p.stock_quantity = 0
THEN 'eligible_never_sold'
WHEN p.status = 'draft'
AND p.created_at < CURRENT_DATE - INTERVAL '1 year'
AND p.stock_quantity = 0
THEN 'eligible_old_draft'
ELSE 'not_eligible'
END as deletion_eligibility,
-- Safety check results
CASE
WHEN (SELECT COUNT(*) FROM order_items oi WHERE oi.product_id = p.product_id) > 0 THEN 'has_order_references'
WHEN (SELECT COUNT(*) FROM shopping_cart_items sci WHERE sci.product_id = p.product_id) > 0 THEN 'has_cart_references'
WHEN p.stock_quantity > 0 THEN 'has_inventory'
WHEN p.status = 'active' THEN 'still_active'
ELSE 'safe_to_delete'
END as safety_check
FROM products p
WHERE p.status IN ('discontinued', 'draft', 'inactive')
),
safe_deletions AS (
SELECT *
FROM deletion_analysis
WHERE deletion_eligibility != 'not_eligible'
AND safety_check = 'safe_to_delete'
AND order_references = 0
AND cart_references = 0
),
cascade_cleanup_required AS (
SELECT
sd.*,
ARRAY[
CASE WHEN sd.review_count > 0 THEN 'product_reviews' END,
CASE WHEN sd.wishlist_references > 0 THEN 'wishlist_items' END
]::TEXT[] as cascade_tables
FROM safe_deletions sd
WHERE sd.review_count > 0 OR sd.wishlist_references > 0
)
-- Archive products before deletion
INSERT INTO archived_products
SELECT
p.*,
sd.deletion_eligibility as archive_reason,
CURRENT_TIMESTAMP as archived_at,
'bulk_cleanup_2025' as archive_batch
FROM products p
JOIN safe_deletions sd ON p.product_id = sd.product_id;
-- Execute cascade deletions first
DELETE FROM product_reviews
WHERE product_id IN (
SELECT product_id FROM cascade_cleanup_required
WHERE 'product_reviews' = ANY(cascade_tables)
)
WITH BULK_OPTIONS (
batch_size = 500,
continue_on_error = true,
ordered = false
);
DELETE FROM wishlist_items
WHERE product_id IN (
SELECT product_id FROM cascade_cleanup_required
WHERE 'wishlist_items' = ANY(cascade_tables)
)
WITH BULK_OPTIONS (
batch_size = 500,
continue_on_error = true,
ordered = false
);
-- Execute main product deletion
DELETE FROM products
WHERE product_id IN (
SELECT product_id FROM safe_deletions
)
WITH BULK_OPTIONS (
batch_size = 1000,
continue_on_error = false, -- Fail fast for main deletions
ordered = false,
-- Deletion-specific optimizations
optimize_for_throughput = true,
minimal_logging = false, -- Keep full audit trail
-- Safety configurations
max_deletion_rate = 100, -- Max deletions per second
safety_checks = true,
confirm_deletion_count = true
);
-- Log deletion operation results
INSERT INTO bulk_operation_audit (
operation_type,
operation_batch,
collection_name,
records_processed,
records_affected,
operation_timestamp,
operation_metadata
)
SELECT
'bulk_delete',
'product_cleanup_2025',
'products',
(SELECT COUNT(*) FROM safe_deletions),
@@ROWCOUNT, -- Actual deleted count
CURRENT_TIMESTAMP,
JSON_OBJECT(
'deletion_criteria', 'discontinued_and_never_sold',
'safety_checks_passed', true,
'cascade_cleanup_performed', true,
'products_archived', true
);
COMMIT BULK_OPERATION;
-- Comprehensive bulk operations monitoring and analysis
WITH bulk_operation_analytics AS (
SELECT
DATE_TRUNC('hour', operation_timestamp) as time_bucket,
operation_type,
collection_name,
-- Volume metrics
COUNT(*) as operation_count,
SUM(records_processed) as total_records_processed,
SUM(records_affected) as total_records_affected,
-- Performance metrics
AVG(processing_time_ms) as avg_processing_time_ms,
PERCENTILE_CONT(0.95) WITHIN GROUP (ORDER BY processing_time_ms) as p95_processing_time_ms,
AVG(throughput_records_per_second) as avg_throughput,
-- Success metrics
COUNT(*) FILTER (WHERE status = 'completed') as successful_operations,
COUNT(*) FILTER (WHERE status = 'failed') as failed_operations,
COUNT(*) FILTER (WHERE status = 'partial_success') as partial_success_operations,
-- Resource utilization
AVG(batch_count) as avg_batches_per_operation,
AVG(memory_usage_mb) as avg_memory_usage_mb,
AVG(cpu_usage_percent) as avg_cpu_usage_percent,
-- Error analysis
SUM(retry_attempts) as total_retry_attempts,
COUNT(*) FILTER (WHERE error_type IS NOT NULL) as operations_with_errors
FROM bulk_operation_log
WHERE operation_timestamp >= CURRENT_TIMESTAMP - INTERVAL '24 hours'
GROUP BY DATE_TRUNC('hour', operation_timestamp), operation_type, collection_name
),
performance_trends AS (
SELECT
operation_type,
collection_name,
-- Trend analysis
AVG(avg_processing_time_ms) as overall_avg_processing_time,
STDDEV(avg_processing_time_ms) as processing_time_variability,
AVG(avg_throughput) as overall_avg_throughput,
-- Capacity analysis
MAX(total_records_processed) as max_records_in_hour,
AVG(avg_memory_usage_mb) as typical_memory_usage,
MAX(avg_memory_usage_mb) as peak_memory_usage,
-- Reliability metrics
ROUND(
(SUM(successful_operations)::FLOAT /
NULLIF(SUM(operation_count), 0)) * 100,
2
) as success_rate_percent,
SUM(total_retry_attempts) as total_retries,
SUM(operations_with_errors) as error_count
FROM bulk_operation_analytics
GROUP BY operation_type, collection_name
)
SELECT
boa.time_bucket,
boa.operation_type,
boa.collection_name,
-- Current period metrics
boa.operation_count,
boa.total_records_processed,
boa.total_records_affected,
-- Performance indicators
ROUND(boa.avg_processing_time_ms::NUMERIC, 2) as avg_processing_time_ms,
ROUND(boa.p95_processing_time_ms::NUMERIC, 2) as p95_processing_time_ms,
ROUND(boa.avg_throughput::NUMERIC, 2) as avg_throughput_rps,
-- Success metrics
boa.successful_operations,
boa.failed_operations,
boa.partial_success_operations,
ROUND(
(boa.successful_operations::FLOAT /
NULLIF(boa.operation_count, 0)) * 100,
2
) as success_rate_percent,
-- Resource utilization
ROUND(boa.avg_batches_per_operation::NUMERIC, 1) as avg_batches_per_operation,
ROUND(boa.avg_memory_usage_mb::NUMERIC, 2) as avg_memory_usage_mb,
ROUND(boa.avg_cpu_usage_percent::NUMERIC, 1) as avg_cpu_usage_percent,
-- Performance comparison with trends
pt.overall_avg_processing_time,
pt.overall_avg_throughput,
pt.success_rate_percent as historical_success_rate,
-- Performance indicators
CASE
WHEN boa.avg_processing_time_ms > pt.overall_avg_processing_time * 1.5 THEN 'degraded'
WHEN boa.avg_processing_time_ms < pt.overall_avg_processing_time * 0.8 THEN 'improved'
ELSE 'stable'
END as performance_trend,
-- Health status
CASE
WHEN boa.failed_operations > boa.successful_operations THEN 'unhealthy'
WHEN boa.avg_processing_time_ms > 60000 THEN 'slow' -- > 1 minute
WHEN boa.avg_throughput < 10 THEN 'low_throughput'
WHEN (boa.successful_operations::FLOAT / NULLIF(boa.operation_count, 0)) < 0.95 THEN 'unreliable'
ELSE 'healthy'
END as health_status,
-- Optimization recommendations
ARRAY[
CASE WHEN boa.avg_processing_time_ms > 30000 THEN 'Consider increasing batch size' END,
CASE WHEN boa.avg_memory_usage_mb > 1024 THEN 'Monitor memory usage' END,
CASE WHEN boa.total_retry_attempts > 0 THEN 'Investigate retry causes' END,
CASE WHEN boa.avg_throughput < pt.overall_avg_throughput * 0.8 THEN 'Performance degradation detected' END
]::TEXT[] as recommendations
FROM bulk_operation_analytics boa
LEFT JOIN performance_trends pt ON
boa.operation_type = pt.operation_type AND
boa.collection_name = pt.collection_name
ORDER BY boa.time_bucket DESC, boa.operation_type, boa.collection_name;
-- Real-time bulk operations dashboard
CREATE VIEW bulk_operations_dashboard AS
WITH current_operations AS (
SELECT
COUNT(*) as active_operations,
SUM(CASE WHEN status = 'processing' THEN 1 ELSE 0 END) as processing_operations,
SUM(CASE WHEN status = 'queued' THEN 1 ELSE 0 END) as queued_operations,
AVG(progress_percent) as avg_progress_percent
FROM active_bulk_operations
),
recent_performance AS (
SELECT
COUNT(*) as operations_last_hour,
AVG(processing_time_ms) as avg_processing_time_last_hour,
AVG(throughput_records_per_second) as avg_throughput_last_hour,
COUNT(*) FILTER (WHERE status = 'completed') as successful_operations_last_hour,
COUNT(*) FILTER (WHERE status = 'failed') as failed_operations_last_hour
FROM bulk_operation_log
WHERE operation_timestamp >= CURRENT_TIMESTAMP - INTERVAL '1 hour'
),
system_health AS (
SELECT
CASE
WHEN co.processing_operations > 10 THEN 'high_load'
WHEN co.queued_operations > 20 THEN 'queue_backlog'
WHEN rp.failed_operations_last_hour > rp.successful_operations_last_hour THEN 'high_error_rate'
WHEN rp.avg_processing_time_last_hour > 120000 THEN 'slow_performance' -- > 2 minutes
ELSE 'healthy'
END as overall_status,
co.active_operations,
co.processing_operations,
co.queued_operations,
ROUND(co.avg_progress_percent::NUMERIC, 1) as avg_progress_percent,
rp.operations_last_hour,
ROUND(rp.avg_processing_time_last_hour::NUMERIC, 2) as avg_processing_time_ms,
ROUND(rp.avg_throughput_last_hour::NUMERIC, 2) as avg_throughput_rps,
rp.successful_operations_last_hour,
rp.failed_operations_last_hour,
CASE
WHEN rp.operations_last_hour > 0 THEN
ROUND((rp.successful_operations_last_hour::FLOAT / rp.operations_last_hour * 100)::NUMERIC, 2)
ELSE 0
END as success_rate_last_hour
FROM current_operations co
CROSS JOIN recent_performance rp
)
SELECT
CURRENT_TIMESTAMP as dashboard_time,
sh.overall_status,
sh.active_operations,
sh.processing_operations,
sh.queued_operations,
sh.avg_progress_percent,
sh.operations_last_hour,
sh.avg_processing_time_ms,
sh.avg_throughput_rps,
sh.successful_operations_last_hour,
sh.failed_operations_last_hour,
sh.success_rate_last_hour,
-- Alert conditions
ARRAY[
CASE WHEN sh.processing_operations > 15 THEN 'High number of concurrent operations' END,
CASE WHEN sh.queued_operations > 25 THEN 'Large operation queue detected' END,
CASE WHEN sh.success_rate_last_hour < 90 THEN 'Low success rate detected' END,
CASE WHEN sh.avg_processing_time_ms > 180000 THEN 'Slow processing times detected' END
]::TEXT[] as current_alerts,
-- Capacity indicators
CASE
WHEN sh.active_operations > 20 THEN 'at_capacity'
WHEN sh.active_operations > 10 THEN 'high_utilization'
ELSE 'normal_capacity'
END as capacity_status
FROM system_health sh;
-- QueryLeaf provides comprehensive MongoDB bulk operations capabilities:
-- 1. SQL-familiar syntax for complex bulk operations with advanced batching
-- 2. Intelligent performance optimization with adaptive batch sizing
-- 3. Comprehensive error handling and recovery mechanisms
-- 4. Real-time progress tracking and monitoring capabilities
-- 5. Advanced data validation and business rule enforcement
-- 6. Enterprise-grade audit trails and compliance logging
-- 7. Memory and resource management for large-scale operations
-- 8. Integration with MongoDB's native bulk operation optimizations
-- 9. Sophisticated cascade handling and dependency management
-- 10. Production-ready monitoring and alerting with health indicators
Best Practices for Production Bulk Operations
Bulk Operations Strategy Design
Essential principles for effective MongoDB bulk operations deployment:
- Batch Size Optimization: Configure adaptive batch sizing based on data characteristics, system resources, and performance requirements
- Error Handling Strategy: Implement comprehensive error recovery with retry logic, partial success handling, and dead letter queue management
- Resource Management: Monitor memory usage, connection pooling, and system resources during large-scale bulk operations
- Performance Monitoring: Track throughput, latency, and success rates with real-time alerting for performance degradation
- Data Validation: Implement robust validation pipelines that catch errors early and minimize processing overhead
- Transaction Management: Design bulk operations with appropriate consistency guarantees and transaction boundaries
Enterprise Bulk Processing Optimization
Optimize bulk operations for production enterprise environments:
- Distributed Processing: Implement shard-aware bulk operations that optimize workload distribution across MongoDB clusters
- Compliance Integration: Ensure bulk operations meet audit requirements with comprehensive logging and data lineage tracking
- Capacity Planning: Design bulk processing systems that can scale with data volume growth and peak processing requirements
- Security Controls: Implement access controls, encryption, and security monitoring for bulk data operations
- Operational Integration: Integrate bulk operations with monitoring, alerting, and incident response workflows
- Cost Optimization: Monitor and optimize resource usage for efficient bulk processing operations
Conclusion
MongoDB bulk operations provide sophisticated capabilities for high-performance batch processing, data migrations, and large-scale data operations that eliminate the complexity and performance limitations of traditional individual record processing approaches. Native bulk write operations offer scalable, efficient, and reliable data processing with comprehensive error handling and performance optimization.
Key MongoDB bulk operations benefits include:
- High-Performance Processing: Native bulk operations with minimal overhead and maximum throughput for millions of documents
- Advanced Error Handling: Sophisticated error recovery with partial success support and comprehensive retry mechanisms
- Intelligent Optimization: Adaptive batch sizing and performance optimization based on data characteristics and system resources
- Comprehensive Monitoring: Real-time operation tracking with detailed metrics and health indicators
- Enterprise Scalability: Production-ready bulk processing that scales efficiently with data volume and system complexity
- SQL Accessibility: Familiar SQL-style bulk operations through QueryLeaf for accessible high-performance data processing
Whether you're performing data migrations, batch updates, large-scale imports, or complex data transformations, MongoDB bulk operations with QueryLeaf's familiar SQL interface provide the foundation for reliable, efficient, and scalable high-performance data processing.
QueryLeaf Integration: QueryLeaf automatically translates SQL-style bulk operations into MongoDB's native bulk write operations, making high-performance batch processing accessible to SQL-oriented development teams. Complex validation pipelines, error handling strategies, and performance optimizations are seamlessly handled through familiar SQL constructs, enabling sophisticated bulk data operations without requiring deep MongoDB bulk processing expertise.
The combination of MongoDB's robust bulk operation capabilities with SQL-style batch processing syntax makes it an ideal platform for applications requiring both high-performance data operations and familiar database management patterns, ensuring your bulk processing workflows can handle enterprise-scale data volumes while maintaining reliability and performance as your systems grow and evolve.